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6.1 Sparsity models

Let 0* € R? be an unknown regression vector. Suppose that we observe y € R” and X € R"*4 via the linear
model:
y= X0 +w

Hard sparsity The support set of 8* is defined as
S(0%):={je{l,....d}:0; # 0}

The hard sparsity requires s := |S(6*)| substantially smaller than d. Under the sparsity assumption, we may
have a unique linear solution of the least squares estimator.

6.2 Basis pursuit linear program

Basis pursuit linear program. When w = 0 € R", consider such a program:

min [|f]]; such that X0 = y. (6.1)
R4

Assume that there is a vector #* € R% whose support is S C {1,...,d} such that y = X6*.
Nullspace. null(X) = {A € R? : XA = 0}. which is the feasible space for (6.1).
Tangent cone. T (%) = {A € R?: ||§* + tA[|; < [60*]]; for some ¢ > 0}.

Proposition 6.1 If we want the solution of (6.1) to be unique and exactly 6*, it is equivalent to require that

null(X) N T(6*) = {0}. (6.2)

Proposition 6.2 Define C(S) = {A € R?: ||Age|ly < ||Asl|li}. Then, it holds that
T(6*) C C(S).

Restricted nullspace property. Based on (6.2), we give the following definition: The matrix X satisfies
the restricted nullspace property with respect to S if

null(X) N C(S) = {0}. (6.3)
Theorem 6.3 If X satisfies the restricted nullspace property, the following two properties are equivalent:

(a) For any vector * € R with support S, the basis pursuit program (6.1) applied with y = X0* has unique
solution 6 = 0*.

(b) The matriz X satisfies the restricted nullspace property with respect to S.
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6.3 From basis pursuit program

Suppose that the noise vector w € R™ is a non-degenerated random vector.

Extension of the basis pursuit program. The extension relaxes the constraints of the basis pursuit
program, i.e., y does not have to X6 for some 6. The extended program can be written as

1
in ||0 h that — ||y — X602 < b2 6.4
min [|6f};  such that -y Iz < (6.4)

for some noise tolerance b > 0.

The program above can be shown as equivalent as such a program:

1 2
Inin {%Ily - X9||2} such that |0, < R (6.5)

for some radius R > 0.

Lasso program. To eliminate the constraint, one can consider the lasso program as well:

(1 )
i { 5l = X018 -+ Aol }. (6:)

Here )\, > 0 is a regularization parameter to be chosen by the user.

Proposition 6.4 (Equivalent programs) Suppose that (6.4), (6.5), and (6.6) are convex programs. Then
it holds that

(i) For any b > 0, there exists A > 0 such that program (6.4) and program (6.6) are equivalent;

(ii) For any R > 0, there exists A > 0 such that program (6.5) and program (6.6) are equivalent.

Note: The proof need to use the strong duality of the Lagrangian program and the minimax theorem. And
the proof of minimax theorem is provided below.

6.4 Estimation in noisy settings

Extension of restricted nullspace. Define the set

Ca(S) :={A €R: |Ase|1 < al|As|1}-

RE condition. The matrix X satisfies the restricted eigenvalue (RE) condition over S with parameters
(k, ) if

1
EHXAH% > k||A|3 for all A € C,(9). (6.7)
Assumption 6.5 (Lasso assumptions) Assume that

(A1) The vector 0* is supported on a subset S C {1,...,d} with |S| = s.

(A2) The design matriz X satisfies the RE condition with parameter (k,3):

1
ﬁ||xA||§ > k| A2 for all A € T5(5S).
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The Lagrangian Lasso is defined as:

. 1
- in { —|ly — X0|13 + A\al0]1 ¢ - 6.8
arg min { 5, 1Y 12 + Anll ||1} (6.8)

Theorem 6.6 (Theorem 7.13 in Wainwright’s book) Under assumptions (A1) and (Az), for any so-

lution 8 of the Lagrangian Lasso with A, > 2||XTT“JHOO, we have

REENCW

6.5 Concentration

Lemma 6.7 (Markov inequality) For a non-negative random variable X with E[X] < oo, it holds that,
for anyt >0,

PX >t < @

Lemma 6.8 (Concentration for the Gaussian variable) Suppose that X ~ N(0,02). it holds that, for
any t >0,

+2

P(X >t) <e 22,

Note: To obtain the concentration for the Gaussian variable, we need to use Markov inequality and the
moment generating function of the Gaussian variable.

I‘OpOSl 10on . oncentratction ior € maxima uppose a Tyeoey d N ’ ,07). en we
P ition 6.9 (C tration for th i s that X X, "X N(0,02). Th

have

t2
P(max{X1,...,Xq} >t) < de 2.2.

Note: The key step is to use the union bound.

6.6 proof of Minimax theorem

Theorem 6.10 (Minimax theorem) Let ¢(z,y): X x Y — R. Define

* = max min ¢(z
p yewexcb(,y)

and

d* = min max ¢(x
min mo o(,y)

It holds that the gap p* — d* is zero if:
- X,Y are both convex, and one of them is compact.
- The function ¢ is convezx-concave: ¢(-,y) is convex for everyy € Y, and ¢(x,-) is concave for every x € X.

- The function ¢ is continuous.
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To show this, we need following lemmas:

Lemma 6.11 It holds that

max min ¢(x < min ma; T,
yE))i(aceX¢( ' Y) xexyexcb( Y).

Proof: Forany z € X,y € Y
min ¢ / <o < max ¢ .
m’eH)l( (z,y) < ¢(x,y) < y'?§]{ (z,9")

Since the inequality holds for any z € X and any y € ), we can take max on the left and take min on the
right:

max min ¢(x < min ma; T
yel}i{xeX¢( 2 Y) xexyew( )

Lemma 6.12 The following statements are equivalent:

(1) There exists (x*,y*) € X x Y such that for anyx € X, y € Y,

* < * * < . * )
ryng(b(x y) <zt y") < gggﬂw,y )

(2) The minimaz equation holds:

a; = a;
TR Y) = Ry )

and

IZ’ = arg min max X
g min ma o(x,y),

— arg max min X
y* g max Lexcé( \Y)-

Proof: (1) = (2): Take min and max on the left and right respectively:

< y*) <
gg)r(lryneagd YY) < ot y") I;leaﬁrélw(x yr).

Together with lemma 3.4, we have

* *
p(z*,y") = max min ¢(z,y) = min max o(x,y).

(2) = (1): by the definition of z* and y*, we have

max ¢(”,y) = min max ¢(v, y) = maxmin ¢(z, y) = min é(z, y").

Thus,
* * < * — . * < * *
p(z*,y") < r;leafé(x 'Y) gg;@(x,y ) < o(x",y"),

which implies that ¢(z*, y*) = maxyey ¢(z*, y) = mingex ¢(z,y*). [ |
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