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Last week we learn about the consistency theorem of Lagrangian Lasso:

Theorem 5.1 Assume that θ∗ has its support on S and X satisfies the RE condition. for any solution θ̂ of

the Lagrangian Lasso with λn ≥ 2∥XTw
n ∥∞, we have

∥θ̂ − θ∗∥2 ≤ 3

k

√
sλn.

Gaussian variable. A random variable X with mean µ and variance σ2 is said to be Gaussian if its density
f satisfies

f(x) =
1√
2πσ2

exp

{
− 1

2σ2
(x− µ)2

}
,

and we denote X as
X ∼ N (µ, σ2).

Moment generating function. The moment generating function (MGF) of X is defined as

MX(t) = E[etX ].

For Gaussian variable X ∼ N (µ, σ2), its MGF is

MX(t) = E[etX ] = eµt+
σ2

2 t2 .

Lemma 5.2 (Markov inequality) For a non-negative random variable X with E[X] < ∞, it holds that,
for any t > 0,

P(X > t) ≤ E[X]

t
.

Proof: Note that

P(X > t) = E[1{X>t}] ≤ E[
X

t
1{X>t}] ≤ E[

X

t
] =

E[X]

t
.

Lemma 5.3 Suppose that X ∼ N (0, σ2). it holds that, for any t > 0,

P(X ≥ t) ≤ e−
t2

2σ2 .

Proof: By Markov inequality and the MGF of a Gaussian variable, for any t > 0 and s > 0,

P(X ≥ t) = P(esX ≥ est) ≤ e−stE[esX ] = e−ts+σ2

2 s2 .

Since −ts+ σ2

2 s2 takes its minimum at s = t
σ2 , we have

P(X ≥ t) ≤ e−
2t2

σ2 .
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Proposition 5.4 Suppose that X1, . . . , Xd
i.i.d.∼ N (0, σ2). Then we have

P(max{X1, . . . , Xd} ≥ t) ≤ d exp

{
− t2

2σ2

}

Proof:

P(max{X1, . . . , Xd} ≥ t) ≤ P(∪d
i=1{Xi ≥ t})

≤
d∑

i=1

P(Xi ≥ t)

≤ d exp

{
− t2

2σ2

}
.

Example 7.14 in Wainwright’s book. Consider the classical linear Gaussian model, where w ∈ Rn has
i.i.d. N (0, σ2) entries.

Consider X ∈ Rn×d is fixed. Suppose that X satisfies the RE condition, and that it is C-column normalized,
i.e.,

max
j=1,...,d

∥X(·, j)∥2√
n

≤ C.

Thus, the random variable ∥XTw
n ∥∞ corresponds to the absolute maximum of d zero-mean Gaussian variables,

each with variance at most C2σ2

n , since

var(
X(·, j)Tw

n
) =

σ2

n2

n∑
i=1

X(i, j)2 = σ2 ∥X(·, j)∥22
n2

≤ C2σ2

n
.

The standard Gaussian tail bounds states that, for any j ∈ {1, . . . , d},

P

(∣∣∣∣X(·, j)Tw
n

∣∣∣∣ ≥ t

)
≤ 2 exp{− nt2

2C2σ2
} for all t > 0.

Thus, for all δ > 0,

P

(∥∥∥∥XTw

n

∥∥∥∥
∞

≥ Cσ

(√
2 log d

n
+ δ

))
≤

d∑
j=1

P

(
X(·, j)Tw

n
≥ Cσ

(√
2 log d

n
+ δ

))

≤ 2d exp

−
nC2σ2(

√
2 log d

n + δ)2

2C2σ2


≤ 2e−nδ2/2.

If we set λn = 2Cσ( 2 log d
n + δ), this means that λn ≥ 2

∥∥∥XTw
n

∥∥∥
∞

with the probability at least 1− 2e−nδ2/2.

Then the theorem implies that with the probability at least 1− 2e−nδ2/2, we have

∥θ̂ − θ∗∥2 ≤ 3

k

√
sλn =

6Cσ

k

√
s

{
2 log d

n
+ δ

}
.
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Note: If we take δ =
(
1
n

) 1
2−α

for some α > 0, then with the probability at least 1− 2e−n2α/2, it holds that

∥θ̂ − θ∗∥2 ≤ 3

k

√
sλn =

6Cσ

k

√
s

{
2 log d

n
+

1

n1/2−α

}
,

which would converge to zero with the rate slightly slower than 1/
√
n.


