STAT 499: Undergraduate Research

Week 3: Estimation in noisy settings

Facheng Yu Compiled on: 2024-01-23, 18:59:45

3.1 From basis pursuit program

Suppose that $(y, \mathbf{X}) \in \mathbb{R}^n \times \mathbb{R}^{n \times d}$, we now consider the model $y = \mathbf{X}\theta^* + w$ with the noise vector $w \in \mathbb{R}^n$.

Extension of the basis pursuit program. The extension relaxes the constraints of the basis pursuit program, i.e., y does not have to $\mathbf{X}\theta$ for some θ . The extended program can be written as

$$\min_{\theta \in \mathbb{R}^d} \|\theta\|_1 \quad \text{such that } \frac{1}{2n} \|y - \mathbf{X}\theta\|_2^2 \le b^2$$
 (3.1)

for some noise tolerance b > 0.

The program above can be shown as equivalent as such a program:

$$\min_{\theta \in \mathbb{R}^d} \left\{ \frac{1}{2n} \|y - \mathbf{X}\theta\|_2^2 \right\} \quad \text{such that } \|\theta\|_1 \le R$$
 (3.2)

for some radius R > 0.

Lasso program. To eliminate the constraint, one can consider the lasso program as well:

$$\min_{\theta \in \mathbb{R}^d} \left\{ \frac{1}{2n} \|y - \mathbf{X}\theta\|_2^2 + \lambda_n \|\theta\|_1 \right\}. \tag{3.3}$$

Here $\lambda_n > 0$ is a regularization parameter to be chosen by the user.

Note: By Lagrangian duality theory, all three families of convex programs are equivalent, which is given in the next section.

3.2 Equivalent programs

Consider such a convex optimization:

$$p^* := \min_x f_0(x) : \quad f_i(x) \le 0, \quad i = 1, \dots, m,$$

 $h_i(x) = 0, \quad i = 1, \dots, p,$

where the functions f_0, f_1, \ldots, f_m are convex, and h_1, \ldots, h_p are affine.

Let \mathcal{D} be the domain of the problem and $\mathcal{X} \subseteq \mathcal{D}$ be its feasible set.

Define the Lagrangian $\mathcal{L}: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with values

$$\mathcal{L}(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x).$$

The dual function is $g: \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with values

$$g(\lambda, \nu) := \min_{x} \mathcal{L}(x, \lambda, \nu).$$

The dual problem is

$$d^* = \max_{\lambda > 0, \nu} g(\lambda, \nu).$$

Strong duality. The convex program is said to satisfy strong duality if $p^* = d^*$.

Theorem 3.1 (Strong duality via Slater condition) We say that the problem satisfies Slater's condition if it is strictly feasible, that is:

$$\exists x_0 \in \mathcal{D} : f_i(x_0) < 0, \quad i = 1, \dots, m, \quad h_i(x_0) = 0, \quad i = 1, \dots, p.$$

If the primal problem (8.1) is convex, and satisfies the weak Slater's condition, then strong duality holds, that is, $p^* = d^*$.

We also need minimax theorem to help change the order of minimization and maximization:

Theorem 3.2 (Minimax theorem) Let $\phi(x,y): \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$. Define

$$p^* = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \phi(x, y)$$

and

$$d^* = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \phi(x, y)$$

It holds that the gap $p^* - d^*$ is zero if:

- \mathcal{X}, \mathcal{Y} are both convex, and one of them is compact.
- The function ϕ is convex-concave: $\phi(\cdot, y)$ is convex for every $y \in \mathcal{Y}$, and $\phi(x, \cdot)$ is concave for every $x \in \mathcal{X}$.
- The function ϕ is continuous.

In our case, the program is reduced to the situation that m = 1 and p = 0 for 3.1 and 3.2. By theorem 3.1 and theorem 3.2 we would have following statements.

Proposition 3.3 Suppose that (3.1), (3.2), and (3.3) are convex programs. Then it holds that

- (i) For any b > 0, there exists $\lambda \ge 0$ such that program (3.1) and program (3.3) are equivalent;
- (ii) For any R > 0, there exists $\lambda \ge 0$ such that program (3.2) and program (3.3) are equivalent.

Proof:

(i) The primal program is

$$\min_{\theta \in \mathbb{R}^d} \|\theta\|_1 \quad \text{ such that } \frac{1}{2n} \|y - \mathbf{X}\theta\|_2^2 - b^2 \le 0. \tag{3.4}$$

The corresponding dual program is

$$\max_{\lambda > 0} \min_{\theta \in \mathbb{R}^d} \|\theta\|_1 + \lambda \left\{ \frac{1}{2n} \|y - \mathbf{X}\theta\|_2^2 - b^2 \right\}.$$
 (3.5)

By theorem 3.2 we can exchange the min and max:

$$\max_{\lambda>0} \min_{\theta \in \mathbb{R}^d} \|\theta\|_1 + \lambda \left\{ \frac{1}{2n} \|y - \mathbf{X}\theta\|_2^2 - b^2 \right\}$$
(3.6)

$$= \min_{\theta \in \mathbb{R}^d} \max_{\lambda > 0} \|\theta\|_1 + \lambda \left\{ \frac{1}{2n} \|y - \mathbf{X}\theta\|_2^2 - b^2 \right\}$$

$$(3.7)$$

$$= \min_{\theta \in \mathbb{R}^d} \|\theta\|_1 + \lambda^* \left\{ \frac{1}{2n} \|y - \mathbf{X}\theta\|_2^2 - b^2 \right\} \text{ for some } \lambda^* > 0.$$
 (3.8)

Then by theorem 3.1, we know that program (3.1) and program (3.3) are equivalent.

(ii) The proof is identical to (i).

3.3 Proof of the minimax theorem

Lemma 3.4 It holds that

$$\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \phi(x, y) \leq \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \phi(x, y).$$

Proof: For any $x \in \mathcal{X}$, $y \in \mathcal{Y}$

$$\min_{x' \in \mathcal{X}} \phi(x', y) \le \phi(x, y) \le \max_{y' \in \mathcal{Y}} \phi(x, y').$$

Since the inequality holds for any $x \in \mathcal{X}$ and any $y \in \mathcal{Y}$, we can take max on the left and take min on the right:

$$\max_{y \in \mathcal{Y}} \min_{x' \in \mathcal{X}} \phi(x', y) \le \min_{x \in \mathcal{X}} \max_{y' \in \mathcal{Y}} \phi(x, y').$$

Lemma 3.5 The following statements are equivalent:

(1) There exists $(x^*, y^*) \in \mathcal{X} \times \mathcal{Y}$ such that for any $x \in \mathcal{X}$, $y \in \mathcal{Y}$,

$$\max_{y \in \mathcal{Y}} \phi(x^*, y) \leq \phi(x^*, y^*) \leq \min_{x \in \mathcal{X}} \phi(x, y^*).$$

(2) The minimax equation holds:

$$\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \phi(x, y) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \phi(x, y)$$

and

$$x^* = \arg\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \phi(x, y),$$

$$y^* = \arg\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \phi(x, y).$$

Proof: (1) \implies (2): Take min and max on the left and right respectively:

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \phi(x^*, y) \leq \phi(x^*, y^*) \leq \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \phi(x, y^*).$$

Together with lemma 3.4, we have

$$\phi(x^*, y^*) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \phi(x, y) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \phi(x, y).$$

(2) \implies (1): by the definition of x^* and y^* , we have

$$\max_{y \in \mathcal{Y}} \phi(x^*, y) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \phi(x, y) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \phi(x, y) = \min_{x \in \mathcal{X}} \phi(x, y^*).$$

Thus,

$$\phi(x^*, y^*) \le \max_{y \in \mathcal{Y}} \phi(x^*, y) = \min_{x \in \mathcal{X}} \phi(x, y^*) \le \phi(x^*, y^*),$$

which implies that $\phi(x^*, y^*) = \max_{y \in \mathcal{Y}} \phi(x^*, y) = \min_{x \in \mathcal{X}} \phi(x, y^*)$.

Note: Then the proof of theorem follows by proving that Lemma 3.2 (1) holds.