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1.1 Least squares estimator

Suppose that = € R? is a random vector and y € R is a random variable.
Mean squared error. For any estimator f(x) for y, the mean squared error is defined as
MSE; = E[(f(z) - y)?.
For a given model class F, the least squares estimator is defined as
fr=argmingerMSE; = argmingerE[(f(x) — y)?].
By definition, it is easy to see that least squares estimator is also the smallest variance estimator.

Empirical MSE. When the distribution of z and y is unknown, we cannot compute MSE directly. Instead,
we can compute the empirical mean squared error using observed samples (z1,41), -, (Zn, Yn):

_— 1 &
MSE; = n Zl(f(xz) - y¢)2.
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For a given model class F, the empirical least squares estimator is defined as
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f = argmin e MSEy = argminger— 3 (F(x:) = yi)".
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Examples: Linear model. Suppose that the model class F is defined as

F={f:f(x)=a+2TB,a €R,B € R}.
(i): The mean squared error is a function of o and -

MSE; = E[(a+ 278 —y)?] = R(a, B).
Let z = (1,27)7, and v = (a, B). The least squares estimator f*(z) = a* + 27 3* = 27'y* is given by
V" = argmin,epan B[(z"7y — y)?].
By differentiating, we would have
(a*,8%) =" = E[ez"] 7" Elzy).

(ii): The empirical least squares estimator f =a+ xTB = 274 is given by

n
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7 = argmin,ega+i 2(2?7 — )%
i=1
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Let Z = (21,...,2,)T and Y = (y1,...,yn)", then we have
. ) 1 2
v= argmmwe]RdHEHZv - Yz
By differentiating, we would have
(6.8) =5 = (272) (2",

So, one natural question is that when would E[22T] or Z7Z be invertiable?

1.2 Invertible E[z27] and ZZ7

Invertible E[z27]. We first consider when E[2z7] is invertiable.
Recap that z = (1,27)T. Assume that 2 ~ N4(0,Y), then we have

E[22T] = Cov(z, 2) + E[2)E[2T] = <(1) S}) .

Since det(E[22T]) = det(2), E[22T] would be invertible if ¥ is invertible. Intuitively, the weaker correlations
between each pair of covariates is, the more likely E[zz”] being invertiable would be.

Invertible ZZT. Now we consider when Z7 Z is invertiable.

(i) n >> d. Consider the first d + 1 observations zi,...,zqy1. If M = span{zy,..., 2411} # R%T! then
with high probability, the next observation z44+9 would have non-zero projection on the orthogonal space M,
which contributes to additional ranks. So when n >> d, Z7 Z is invertible with high probability.

(ii) d >> n. Since rank(Z7Z) < n << d, ZTZ € R¥*¥1*d cannot be invertible so we cannot simply use
(ZTZ)=Y(ZTY) as the solution.

In case (ii), such a question is considered:
2772y =ZTY.

By linear algebra we know that, the system above has either no solution or infinitely many solutions. To
get a unique solution, one can ”throw” some features and consider a reduced question with d’ << n, then it
comes back to case (i).

1.3 Sparsity models

Now we continuing to consider case (ii) where d > n, and take the same notations as in the Wainwright’s
book. Let #* € R? be an unknown regression vector. Suppose that we observe y € R” and X € R"*? via
the linear model:

y=X0"+w

Hard sparsity The support set of 8* is defined as
S(0%) :={je{1,...,d}: 0 #0}.

The hard sparsity requires s := |S(6*)| substantially smaller than d. Under the sparsity assumption, we may
have a unique linear solution of the least squares estimator.
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Example 7.3 Consider polynomial functions in a scalar variable ¢ € R of degree k, say of the form

fo(t) = 61 + Ot + - - - + O 1 1"

Suppose that we observe n samples {(y;,t;)};—, via y; = fp (t;) + w;. Define the n x (k + 1) matrix

1oty 2 .. th
. 1ty 2 .o th
1 ot, 2 .. tk

and we have y = X6 + w.
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