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1.1 Least squares estimator

Suppose that x ∈ Rd is a random vector and y ∈ R is a random variable.

Mean squared error. For any estimator f(x) for y, the mean squared error is defined as

MSEf = E[(f(x)− y)2].

For a given model class F , the least squares estimator is defined as

f∗ = argminf∈FMSEf = argminf∈FE[(f(x)− y)2].

By definition, it is easy to see that least squares estimator is also the smallest variance estimator.

Empirical MSE. When the distribution of x and y is unknown, we cannot compute MSE directly. Instead,
we can compute the empirical mean squared error using observed samples (x1, y1), . . . , (xn, yn):

M̂SEf =
1

n

n∑
i=1

(f(xi)− yi)
2.

For a given model class F , the empirical least squares estimator is defined as

f̂ = argminf∈FM̂SEf = argminf∈F
1

n

n∑
i=1

(f(xi)− yi)
2.

Examples: Linear model. Suppose that the model class F is defined as

F = {f : f(x) = α+ xTβ, α ∈ R, β ∈ Rd}.

(i): The mean squared error is a function of α and β:

MSEf = E[(α+ xTβ − y)2] =: R(α, β).

Let z = (1, xT )T , and γ = (α, β). The least squares estimator f∗(x) = α∗ + xTβ∗ = zT γ∗ is given by

γ∗ = argminγ∈Rd+1E[(zT γ − y)2].

By differentiating, we would have

(α∗, β∗) = γ∗ = E[zzT ]−1E[zy].

(ii): The empirical least squares estimator f̂ = α̂+ xT β̂ = zT γ̂ is given by

γ̂ = argminγ∈Rd+1

1

n

n∑
i=1

(zTi γ − yi)
2.
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Let Z = (z1, . . . , zn)
T and Y = (y1, . . . , yn)

T , then we have

γ̂ = argminγ∈Rd+1

1

n
∥Zγ − Y ∥22.

By differentiating, we would have

(α̂, β̂) = γ̂ = (ZTZ)−1(ZTY ).

So, one natural question is that when would E[zzT ] or ZTZ be invertiable?

1.2 Invertible E[zzT ] and ZZT

Invertible E[zzT ]. We first consider when E[zzT ] is invertiable.

Recap that z = (1, xT )T . Assume that x ∼ Nd(0,Σ), then we have

E[zzT ] = Cov(z, z) + E[z]E[zT ] =

(
1 0
0 Σ

)
.

Since det(E[zzT ]) = det(Σ), E[zzT ] would be invertible if Σ is invertible. Intuitively, the weaker correlations
between each pair of covariates is, the more likely E[zzT ] being invertiable would be.

Invertible ZZT . Now we consider when ZTZ is invertiable.

(i) n >> d. Consider the first d + 1 observations z1, . . . , zd+1. If M = span{z1, . . . , zd+1} ̸= Rd+1, then
with high probability, the next observation zd+2 would have non-zero projection on the orthogonal space M ,
which contributes to additional ranks. So when n >> d, ZTZ is invertible with high probability.

(ii) d >> n. Since rank(ZTZ) ≤ n << d, ZTZ ∈ R1+d×1+d cannot be invertible so we cannot simply use
(ZTZ)−1(ZTY ) as the solution.

In case (ii), such a question is considered:

ZTZγ = ZTY.

By linear algebra we know that, the system above has either no solution or infinitely many solutions. To
get a unique solution, one can ”throw” some features and consider a reduced question with d′ << n, then it
comes back to case (i).

1.3 Sparsity models

Now we continuing to consider case (ii) where d > n, and take the same notations as in the Wainwright’s
book. Let θ∗ ∈ Rd be an unknown regression vector. Suppose that we observe y ∈ Rn and X ∈ Rn×d via
the linear model:

y = Xθ∗ + w

Hard sparsity The support set of θ∗ is defined as

S(θ∗) := {j ∈ {1, . . . , d} : θ∗j ̸= 0}.

The hard sparsity requires s := |S(θ∗)| substantially smaller than d. Under the sparsity assumption, we may
have a unique linear solution of the least squares estimator.
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Example 7.3 Consider polynomial functions in a scalar variable t ∈ R of degree k, say of the form

fθ(t) = θ1 + θ2t+ · · ·+ θk+1t
k

Suppose that we observe n samples {(yi, ti)}ni=1 via yi = fθ (ti) + wi. Define the n× (k + 1) matrix

X =


1 t1 t21 · · · tk1
1 t2 t22 · · · tk2
...

...
...

. . .
...

1 tn t2n · · · tkn


and we have y = Xθ + w.
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