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Orthogonal Statistical Learning

Motivation: Many machine learning problems rely on a risk function that is only
partially specified up to a class of risks under the unknown nuisance, wherein
the risk of interest is the one under the true nuisance.

Risk function under unknown nuisance
L:={L(-,9) : g € G}

Risk minimization under true nuisance

f, = arg ?élél[LO(@) = Ezpll(0, g0; 2)]]

Learning the true nuisance would introduce additional statistical error.
One way to make the risk insensitive to nuisance is to orthogonalize it.
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Intuition of Neyman Orthogonality: The parameter tangent space is
orthogonal to the nuisance tangent space.

nuisance
tangent space

orthogonal complement
of the nuisance
tangent space

Arisk is said to be an orthogonal risk if it is
Neyman orthogonal at the true parameter of
Interest and the true nuisance.

Classical Stochastic Gradient Algorithm
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learning rate

(SGD) 9™ = =V _ V00"V §: Z,,)

plug-in nuisance estimator
(independent of samples)

Theorem 1. The standard SGD iterate expected errors satisfy

O((l — ,uxn/Q)n + 1) + HQ — g()H?j) (nuisance sensitive)
For an orthogonal risk, the iterates expected errors satisfy

O((1—pun/2)" +n+ g — ggHé) (nuisance insensitive)

SGD Nuisance
Optimization Error Estimation Error

Using an orthogonal loss can further remove the nuisance estimation error.
However, it is not always possible to handcraft orthogonalized objectives.
Sequentially orthogonalizing first-order information is more flexible.

Orthogonalized Stochastic Gradients

Sno(0,9;2) =Vel(0,g;,2) —ToV,4(0,g;2)

orthogonalizing operator

Intuition:
Project the standard gradient oracle
onto the orthogonal complement of
the nuisance tangent space.
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Example. [Partially Linear Model]

Y = (0,, X) +go(W) + ¢

Consider the following non-orthogonal loss
1
00, 9;2) = 5y — g(w) — (0,))’

The true nuisance and the orthogonalizing operator are

go(W)=E[U |[W] To:g— E[E[X | W]|g(W)]

4O PO nuisance data stream
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parameter data stream

i.i.d.
11y s Lin, D21y s Lomm ~ P

(OSGD)
g(m.n) _ g(n—1) _ 77gr(l"gz)(@(rnz,n—l)’ 5(m). Zm.m)

approximated stochastic gradient oracle
S{(0, g; 2) = Vel(0, g; 2) — TV (6, g; 2)

Theorem 2. OSGD iterate expected errors satisfy

O((1 — un/2)™ 4+ n~t + n +m-Be= /i)

nuisance insensitive rate

Assumptions (| — gol|g = Op(m~ = 1/2)
”fw(m) . FO”Q _ Op(m—(2a—1)/2a)
(nn)~" = 0(1)




