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What Are Nuisances?

Nuisances: any function class 9 = {lg: 2= R}

True nuisance: 90 € Y, which defines the learning problem

0, = argmingeco (Lo(0) = Ezpl(0, go; Z)]] .

Usually the true nuisance is in the form of E[Y | X].



Nuisance: A perspective of regression

Foramodelclass F = 1o : X = R |0 € O},

(Regression problem) Y = fq, (X) +

|

Residual restricted by zero-mean (conditionally),
e Ele| X]=0

What would happen if an additional feature W is observed?

e needs to be further explained by W as 90(W) + €' such that

gl | X, W] =0.



Example 1: Partially Linear Model

Let Z = (X, W,Y) ~ P gych that

Y = (00, X) + go(W) + ¢, where Ele | X, W] =

We can estimate o via the optimization problem:

(9* — arg miﬂ@e@ <1j'Zr\JIP’[Z(é)7 go; Z>]7

00,90;2) = (Y — go(W) — (0, X))*.



Scenarios with Nuisances:

log P(X | 0
ez los X1 .9

The profile 9 is a nuisance!

o Statistics: Semlparametrle Inference

e« Machine Learning: {Proflle L|keI|hood

e Optimization: Dlstrlbutlonally Robust Optlmlzatlon

LL _

min Rp(¢(w)) where Rp(l) = max {Z qili — vD(qllln/n)} (R. Mehta et. al. ICML 2024)

The probability density ¢ is a nuisance!




Nuisances: any function class G:={g9:Z— R}

True nuisance: 90 € Y, which defines the learning problem

0, = arg mingee [Lo(0) = Ezp[f(6, go: Z)]] .

The true nuisance is always unknown — how to learn 6?

1. Estimate 90 by 9.

2. Estimate 0« by arg mingee Ezp|€(0, §; Z)|.



Double/Debiased Machine Learning (DML)

Double/debiased machine learning for treatment
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— Double Machine Learning (DML):

1. Estimate 90 by 9.

2. Estimate 0« by arg Mingee Lz~p [6(97 g; Z)]

Question:

How ¢ influence the estimation of 6.?

— It depends on the orthogonality of the loss function (¢, g; Z),



Neyman Orthogonality

Definition 2 (Neyman Orthogonality). For © C ©, the population loss
L(0,9) =Ezpll(0,g; Z)] is Neyman orthogonal at (0, gg) over © x G" if

DyDgL(04,90) |0 — 0x, g — go| =0 for all (A,g) € © x G’

e Dy and Dy are the directional derivative.

° DQL(Q*, go)[ﬁ — 9*] — <VQL(9*, g()), 9 — 6’*>
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Orthogonalization — Visualization of the Loss Contour

Non-Orthogonal Risk Orthogonalized Risk Cross Sections for Fixed g

---- L(6, g2)
L (67 go )
\ L (07 g1 )

- h

e
Minimizers are insensitive
02 6 * 91 to the nuisance value. 02 H N 01

Figure 1: Illustration of Neyman Orthogonalization. The first two panels are contour plots of the risk function
L(0, g), where 0 varies on the z-axis and g varies on the y-axis. For the orthogonalized risk (center) the contours
are approximately axis-aligned. The right plot shows the cross sections of the non-orthogonal risk when fixing g =
9o, 91, 92. Due to non-orthogonality, the minimizers €, and 65 shown in the first and third plots may drift significantly
from 6,. In contrast, the minimizers in the center plot are less sensitive to the choice of g.
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Example 1: Partially Linear Model

Let Z = (X, W,Y) ~ P guch that

Y = (00, X) + go(W) + ¢, where Ele | X, W| = 0.

1
Non-orthogonal loss: G = Lo(Pw)  £(0,9;2) = §(y — g(w) — (0, z))".

Neyman orthogonal loss: 7, (0, g;2) = %(y — gy (w) — (0,2 — gx(w)))*.

goy(w) :=FEplY | W =w] and gp x (w) :=Ep|X | W = w],

It is NOT always possible to construct a Neyman orthogonal loss!
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Orthogonal Statistical Learning (OSL)

OrthOgOnal St&tlSth&l Leaﬂllng Orthogonal Statistical Learning with Self-Concordant Loss
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Orthogonal Machine Learning: Power and Limitations
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Identify the loss function 4(¢,9; Z) as
the Neyman orthogonal loss or the non-orthogonal loss.
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Previous work in DML/OSL.:
— Empirical Risk Minimization (ERM)

Approximate 0.
by arg mingee % Z?:l 6(6)7 §3 Zz)

Our contribution:
— Stochastic Approximation

Approximate 0,
by 01" =071 — S0V, g: 2,),0 € ©.
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Algorithm 1.

1. € (9,]-ll¢)is a nuisance estimator.

2. 5(0,9;2) = Vol(0,9;2) is the gradient.

3. Let Pn = (Zi)i=1i.i.d. drawn from P.

4. Estimate 0% by SGD updates 0™ = 6" — S0, g; Z,), 0 € ©.

Theorem1. Let S(0.9;2) = Vol(0, 9;2). Then for § and an appropriate

learning rate 7/, it holds that

o, (10 — .13 S~ p0/2)" +[3 — gollg|+ 1.

In addition, if Lis Neyman orthogonal at (6, 90), then

o, (10 — .13 S~ p0/2)" +]13 — gollg|+ .

Can we orthogonalize the stochastic gradient oracle?

Yes!
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Neyman Orthogonality: the Gradient Level

Definition 2 (Neyman Orthogonality). For ©" C O, the population loss
L(0,9) =Ezpll(0,9; 2)| is Neyman orthogonal at (6, gg) over ©" x G" if

DyDgL (0, 90)|0 — 0x, g — go| =0 for all (0,g) € © x G".

The population gradient oracle S(0,q9) = E,p|S(0,g; Z)| is Neyman orthog-
onal at (04, go) over G' C G if
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Orthogonalization — A Gradient Perspective
Consider (0, 9;2) = —logpy 4(2) with G = R*.

1. Compute the orthogonalizing operator:

F() — arg I‘g[lgid%k ‘E[p) [HV@K((Q*,Q(), Z) — Fvgg( *3 905 )H }

2. Remove the projection of the gradient onto the nuisance tangent space:
S51(0,9;2) =Vel(0,g9;2) — LoV, l(0,9;2).

This orthogonalization can be
Generalize to other losses with possibly
infinite-dimensional nuisance space 9.
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Algorithm 2

1. € (9,1 -ll¢)is a nuisance estimator.

2. T'is the operator estimator for Lo.

3. S1(0,9;2) = Vol(0,g;2) —T'V,4L(0,g; 2)

4. Let Dn = (Zi)i-1i.i.d. drawn from P.

5. Estimate Ox by SGD updates 0\ = 0"""Y — S, (6, §; Z,), 0 € ©

Theorem 2. Let S(0, 9;2) = S1(0, 9; 2) as the approximated NO gradient by

using an estimated operator I. Then for 9 and an appropriate learning rate
1, it holds that

ip, (107 — 0,15 S(1— pn/2)"
+ 19— goll& HIIg — goll% - IT — Tol|* .

Improve |9~ ls by the cross product 13— gollg - [T~ o[ !
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Summary

o« We studied the learning problem under the nuisance, which applies to, but is

not limited to, causal inference, distributionally robust optimization, profile
likelihood method.

« We provided non-asymptotic convergence guarantee of stochastic gradient

algorithms instead of empirical risk minimization for learning problem under
nuisance.

« We designed an approximated orthogonal gradient oracle for non-orthogonal
losses to make SGD insensitive to nuisance estimation error.



Extensions

We discussed how interleaving the
nuisance updates and the target updates
can improve the estimation performance.

We discussed several variants of SGD
including SGD with momentum, averaged

SGD, and Adam.
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Abstract

Stochastic gradient optimization is the dominant learning paradigm for a variety of scenarios, from classical su-
pervised learning to modern self-supervised learning. We consider stochastic gradient algorithms for learning prob-
lems whose objectives rely on unknown nuisance parameters, and establish non-asymptotic convergence guarantees.
Our results show that, while the presence of a nuisance can alter the optimum and upset the optimization trajec-
tory, the classical stochastic gradient algorithm may still converge under appropriate conditions, such as Neyman
orthogonality. Moreover, even when Neyman orthogonality is not satisfied, we show that an algorithm variant with
approximately orthogonalized updates (with an approximately orthogonalized gradient oracle) may achieve similar
convergence rates. Examples from orthogonal statistical learning/double machine learning and causal inference are
discussed.

1 Introduction

Machine learning, statistics, and causal inference rely on risk minimization problems of the form
min [Lo(0) := Ez~p [lo(8; Z)] ], (1)

where © C R%isa parameter space, Z is a Z-valued random variable, and £, : © x Z — R is a loss function. The
quantity £,(0; z) describes the performance of a model parametrized by # € © on a test example z € Z. Given only
an oracle that provides a stochastic gradient estimate of the objective (1), practitioners are able to train models ranging
from linear functions on tabular data to billion-parameter neural networks on vision and language data.

The success of stochastic gradient descent (SGD) algorithms (Amari, 1993; Bottou and Le Cun, 2005; Bottou and
Bousquet, 2007; Ward et al., 2020) has motivated an abundance of work on their theoretical properties under various
algorithmic and risk conditions, such as class separability (Soudry et al., 2018), random reshuffling (Giirbiizbalaban
etal., 2021), decomposable objectives (Schmidt et al., 2017; Vaswani et al., 2019), quantization noise (Gorbunov et al.,
2020), and noise dominance (Sclocchi and Wyart, 2024). This success has been fueled by machine learning and Al
software libraries such as JAX, PyTorch, TensorFlow, and others, which offer a wide range of SGD variants, as long
as a loss function can be clearly specified. The gradient is then evaluated automatically on a mini-batch of datapoints
and used for stochastic updates.

Though powerful, this recipe takes one thing for granted: that the learner can always compute the risk (or an
unbiased estimate thereof). Indeed, many complex learning problems rely on a risk function that is only partially
specified up to a class

L:={L(-,9): g€ G}, (2)

where G is a possibly infinite-dimensional set and L : © x G — R is a function of both the target parameter § € ©
and an unknown nuisance parameter g € G.

This framework originates from semiparametric inference (Levit, 1979; Linnik, 2008; Bickel et al., 1993; Van der
Vaart, 2000), wherein the risk is a Kullback-Leibler (KL) divergence and g provides information about the true data-
generating distribution PP, but is not of primary scientific interest. While the partially specified loss framework from (2)
originates from this specific literature, it is not limited to semiparametric inference problems, and connects to many

NeurlPS 2025 (to appear)
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Interleaving nuisance and target updates

1. Estimate 9 € (G, ] - llg) using W1, Wmi.i.d. drawn from Q.
2. Do ) =gt — 773(‘9(n—1)7§3 Zn),s 0 € ©. Dy, := (Zi)i=1i.i.d. drawn from P.

3. Observe new samples from Q and P and repeat 1 and 2.

Proposition 22. Suppose that §\™) satisfies (102) and that §'™) € G, (go) and 8(™Y) € © almost surely for all m > 1
and 0 <t < n. Under Asm. 3, it holds that

77777

‘ A 2 _2 —
Ep, . .uSm~Pmnggm [||9(m ™ —f || | < (1— %) ||9(0) —9*”5 [ESm~'Q"‘ [Hg(m) —gO”Q] < Cm

+ mexp (_#77;””) + (m~ e+ ) ((qn) =" + 1).

In addition, when|(nn)~1 = (9(1), it holds that

o m,n | T )  mn
om0 0,31 < (1- 1)

2 — 3
N 2 T -1 N
2 |




Averaged SGD

Example 5 (Averaged SGD). Let 8,, = 1/n and a,, = n(1 — Br+1) for all n > 1. The momentum updates
implied by this sequence are

m®+) = L) L g gng gt —gm) _p (1 L ) e
n n+4 1
which implies that §(*+1) is the averaged SGD such that
_ 1 n
gt = —— '\ "g(t), 128
n+1 ; (128)

Proposition 24 (Convergence rate of averaged SGD). Consider the partially linear model and the non-orthogonal
loss £(0, g; z) in Appx. B.1.2. Define D,, = (Z1, ..., Zy), sampled from the product measure P". Choose the gradient
oracle S™ to be the score Sy(0,§; Z,,) where § is estimated independently of D,,. Let 0™ be the averaged SGD
defined in (128). Suppose the same assumptions as Lem. 5. If 0 < 1 < Nmax, then

<+

167 — 6,113]
where Nmax = sup{n > 0 : tr (ATEp[XX T]A) — nEp [(X "TAX)?] > 0,VA € S(R?)} and S(R?) is the set of all
d X d symmetric matrices.
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