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A brief overview of data integration

Example 1. Semi-supervised learning
> A labeled dataset (primary data) and an unlabeled dataset (external data).
> Applications in linear regression, mean estimation, etc.

> Data is homogeneous (primary and external sources share the same marginal
distribution).

Example 2. Causal inference
> Integration of randomized controlled trials and observational studies.

> Data could be heterogeneous (primary and external sources could preserve different
marginal distributions).

Question: Popular integration methods usually require individualized covariates from
external sources, which might be unavailable due to concerns over accessibility, privacy,
storage, or cost.
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The use of summary statistics

The use of summary statistics has been explored in various causal inference and data
integration studies. For instance,

> Mendelian randomization in genome-wide association studies (GWAS).

> Data fusion in meta-analysis.

> Require access to outcome-related information from external sources, such as
ﬁleast-squared .

Question: How to conduct efficient estimation in scenarios where

> only summary statistics of the external covariates are available,

> and the outcome of external sources has not yet been generated?
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Our contribution

Throughout the paper, we focus on mean estimation problems. Let (', X, Y) be an
independent copy of the complete data, where

> I € {0,1}: the group indicator, 1 for primary source and 0 for external source,
> X € RY: the covariate vector,
> Y € R: the outcome.

The goal is to conduct the point estimates for

0; = E[Y] (Generalizability) and 6; =E[Y | I = 0] (Transportability).

Note.

> For the entire dataset with sample size n, the primary data can be written as
D, = (I, TiXi, 1Y), where ([, X;, Yi){_; contains i.i.d. samples.

> Since the outcome of external sources has not yet been generated, estimation on 6,
is meaningful.
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Our contribution

With the sample mean X, and sample gram matrix =g from the external source:

% = 2 =TX = 3L - T)XXT
L= STy

our results demonstrate that
> Knowing X is sufficient to construct consistent (doubly robust) estimators for
6, =E[Y] and 6; = E[Y | I = 0] under homogeneity and heterogeneity.
> If S is accessible additionally, asymptotic inference can be conducted.
> Our estimations remain efficient for particularly large external data, i.e.,
=P =1) = 0as n— oco.

Note. Comment on v, =P(I =1) — 0:
> Our measure P is defined on the space of (I';, Xi, Y;)i_;.
> As n — oo, the measure could change while (';, X;, Y;)7_; remains independent.
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Inspiration from linear model under MCAR

We start with the scenario of data homogeneity, which leads to the missing completely at
random (MCAR) assumption:

Assumption 1 (MCAR)

rL(X,Y).

Define the population slope 8* = argmin E[(Y — X 5)?].
BERI
Observe that under MCAR,

> By KKT conditions, § = E[Y] = E[X] 5*.
> Replace E[X] by the sample mean X.; such that

Xan = nt ix,' = (1 —n! i ri))?o + nt i riX.
i=1 i=1 i=1

Note. When 3* is estimated via least squares Eeast,squa,es, this approach aligns with the
semi-supervised least squares (SSLS) estimator fss.s introduced by Zhang et al. (2019).
> In low dimensions, 6755L5 is CAN and at least as efficient as Y,
> require the covariate dimension d satisfying d = o(y/np), where np = 37| [; is the
primary sample size.
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|
Inspiration from linear model and AIPW under MCAR

Let
m(X) =E[Y | X] and 7,(X) =P(I =1 X).

Let m*(-) and ~y,(-) represent the working models for the outcome regression and
propensity score.

> Under MCAR, 7n(X) = v, =P(I =1) and 0, = 0, =: 0.

> Use the naive estimator 3, = n=' 37| T, then v = v,.

> Thus, with m*(X) = X" 3%, AIPW always gives the consistent estimator for 6:

0=E [XT,B* L (v- XTB*)]
Yn
~ X" +En H (Y—XT/B*)] :
Note.

> To apply to high-dimensional setting, we can estimate 8* by Lasso.

> To relax the sparsity assumption, we can use cross-fitting.
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|
Procedure under MCAR

Step 1: Divide the index set [n] into K disjoint subsets 71, ...,Zx with equal sizes such
that nx := |Z| = n/K for k € [K]. Let % = n, ! ez, [i and Z_y = [n] \ Zk.
Step 2: For each k € [K], compute the Lasso estimator B9 with some A, > 0,
2
B9 = arg min Yiez [ (Yi=X'"5)
BER Ziel’_k ri

+ A 181y

Step 3: The mean estimator is proposed as:
K
TS YK (- PR A ‘IZZ L (v=xT3) o)
k=1 i€Zy k=1 IEIk

When the sample gram matrix = is also observable, the corresponding asymptotic
variance estimator is defined as:

K
F=n>"N (-

k=1i€T,
lzz{rx ﬁ<k+—(v X B )} —. (02
k=1 i€y
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Asymptotic theory

Assumption 2

Let the following conditions hold with constants k;,0, 0,0, > 0: (a) X is a
sub-Gaussian random vector with HXTV| ’wz < al|v|l,,¥v € R In addition,

[[XTB*],, <o andinf,czay,~1 EI(X V)] > k. () w=Y —XTp" isa
sub-Gaussian random variable with ||w||, < o. and E[w?] > 6.

The following theorem characterizes asymptotic properties of the mean estimator 0.

Theorem 3

Suppose that Assumptlons 1 and 2 hold. Choose A\, < +/logd/ (nya). If
nyn > (log n) log d and the sparsity level satisfies s = ||3*|lo = o (n7ya/ log d), then as

nd— o0, 80— 0= ,,((n%) 1/2) 52 = 02 {1+ 0,(1)}, and 5-1/n(8 — 8) % N(0,1),
where 02 = Var (XT,B* + % (Y fXTﬁ*)) =, WVar (Y) + ( )Var (XTﬂ )
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AIPW under MAR

In the following, we consider the possibility of data heterogeneity between primary and
external data and assume the following missing at random (MAR) condition instead

Assumption 4 (MAR)
F'LY|X and~,(X):=P(@ =1]|X)> 0 almost surely.

We are interested in

0y = E[Y] (generalizability) and 6, =E[Y | [ = 0] (transportability).

11/18



|
AIPW under MAR

For AIPW, as long as either m*(-) = m(-) or v, (-) = va(-),

00 =& [ (X) + s (¥ = ().

1-T o, FA=% (X))
1™ T )

Consider a linear outcome model m* (X) = X7 84g. The above representations can also
be expressed as:

9t:1E[ (Yfm*(X))}.

* * r *
0g =(1— ) E[X|T=0]" Bog +E |:rXTﬂOR+ 504 (Y_XTBOR):| )

Note. With linear model, we can still construct consistent estimator for 6, and 6..
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Estimation for nuisances under MAR

Consider a cross-fitted estimation. For each fold Zy, and separate Z_x = [n] \ Zx into two
disjoint subsets Z_ o, Z_x,g with same sizes M.

> Construct a logistic propensity estimator for v (X) = expit(X " aps) as
aﬁ,;“ =argmin { M7! Z {(1 —T) Xy a+Tiexp (—X,Ta)} + Ao |||,
acRd i€T_p o
> Construct a linear outcome estimator
2
Bo" = argmin M7 S Frexp (=X aks?) (Y- XT8) + s I8,
Berd i€T_ip

To leveraging conditional independence, we also define a oracle nuisance estimator
assuming aps is known.

~ 2
,Bng) =argmin { M! Z i exp (—X,-Toz,*as) (Y,- — X,-TB) + s 18],
BER? i€T_4p
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Asymptotic theory

When Xj is observed, 6, = E[Y] can be estimated by

6, = n! (FX+ (1— )X TB\(fk)_F# Y, — XTBLH
zz o) on” (o) ( 5)

When Zg is further observed, we can construct the asymptotic variance estimators as:

~2 —1 —K) 2
Og =1 ZZ /BOR :OB\(OR)*Gg

k=1i€Ty

N

k

K
—1 T A=k [ T A=K
0D X B + TA(—K) (Y’ Xi' Bor )
k=1 i€ gl X' a
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Assumptions

Let g(x) = expit(x). For propensity score:
> ko(1 = 7n)/7n < (1 —g(X T aps))/g(X aps) < ks *(1 = 7n)/7n almost surely.
> P(F=0)> q.
> E[yI(X)] < vyd for some g > 1 and v > 0.

In addition,

> For each j € {0,1}, and conditional on I = j, X is a sub-Gaussian random vector
and X" 8% be a sub-Gaussian random variable, both with parameter o.
E[(XT) T =1] >k

> '"fveRd,Hsz:

> The residual wor = Y — X Big is a sub-Gaussian random variable with parameter
ow E[wog |T=1] <ob, and E [wig | T = 1] > du.
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|
Asymptotic theory

Theorem 5

Under MAR and regular assumptions. Choose Ao < A\g =< +/logd/ (nya). Let

myn > (log n)? log d, |laks|lollBorllo = o(nya/(log n (log d)?)), and either of the following
conditions hold: (1) (Correct OR model) 11 (X) = X B or (2) (Correct PS model)

Yn (X) = g (X aps) and |laps|lo = o(y/7a/ log d). Then as n,d — oo,

(a) 5g —0g=0p ((”7n)71/2)r Gz = 05 {1+ 0p(1)}, and ailﬁ(é\g — 0¢) = N(0,1),
where o7 = Var (XTBER + (Y - XT,BZ',R)) .

g(X QPs)
(b) G; — 6. = O, ((n%)*lﬂ), 52 = 02 {1+ 0p(1)}, and & 1v/n(B: — 6:) < N(0, 1),

{11_—WrH (XTﬁc*JR _ 9:) + %TO‘FS))) (y _ XTﬁBR)}2:|_

(1—7n)g(XT apg

where 02 = E

16/18




Extensions

We also study some extensions of our method in
> Estimate ATE in causal inference

> Estimate ATE on the external population in causal inference.
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