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Outline

• A brief overview of data integration

• The use of summary statistics

• Our contribution

− Efficient estimation using external covariate summaries
− Efficient estimation for large external datasets

• Methodology and asymptotic theory

− Mean estimation under data homogeneity
− Correcting selection bias under data heterogeneity
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A brief overview of data integration

Example 1. Semi-supervised learning

> A labeled dataset (primary data) and an unlabeled dataset (external data).

> Applications in linear regression, mean estimation, etc.

> Data is homogeneous (primary and external sources share the same marginal
distribution).

Example 2. Causal inference

> Integration of randomized controlled trials and observational studies.

> Data could be heterogeneous (primary and external sources could preserve different
marginal distributions).

Question: Popular integration methods usually require individualized covariates from
external sources, which might be unavailable due to concerns over accessibility, privacy,
storage, or cost.
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The use of summary statistics

The use of summary statistics has been explored in various causal inference and data
integration studies. For instance,

> Mendelian randomization in genome-wide association studies (GWAS).

> Data fusion in meta-analysis.

> Require access to outcome-related information from external sources, such as
β̂least-squared.

Question: How to conduct efficient estimation in scenarios where

> only summary statistics of the external covariates are available,

> and the outcome of external sources has not yet been generated?
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Our contribution

Throughout the paper, we focus on mean estimation problems. Let (Γ,X ,Y ) be an
independent copy of the complete data, where

> Γ ∈ {0, 1}: the group indicator, 1 for primary source and 0 for external source,

> X ∈ Rd : the covariate vector,

> Y ∈ R: the outcome.

The goal is to conduct the point estimates for

θg = E [Y ] (Generalizability) and θt = E [Y | Γ = 0] (Transportability).

Note.

> For the entire dataset with sample size n, the primary data can be written as
Dn := (Γi , ΓiXi , ΓiYi )

n
i=1, where (Γi ,Xi ,Yi )

n
i=1 contains i.i.d. samples.

> Since the outcome of external sources has not yet been generated, estimation on θt
is meaningful.
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Our contribution

With the sample mean X̄0 and sample gram matrix Ξ̄0 from the external source:

X̄0 =

∑n
i=1(1− Γi )Xi∑n
i=1(1− Γi )

, Ξ̄0 =

∑n
i=1(1− Γi )XiX

⊤
i∑n

i=1(1− Γi )
,

our results demonstrate that

> Knowing X̄0 is sufficient to construct consistent (doubly robust) estimators for
θg = E [Y ] and θt = E [Y | Γ = 0] under homogeneity and heterogeneity.

> If Ξ̄0 is accessible additionally, asymptotic inference can be conducted.

> Our estimations remain efficient for particularly large external data, i.e.,
γn = P(Γ = 1) → 0 as n → ∞.

Note. Comment on γn = P(Γ = 1) → 0:

> Our measure P is defined on the space of (Γi ,Xi ,Yi )
n
i=1.

> As n → ∞, the measure could change while (Γi ,Xi ,Yi )
n
i=1 remains independent.
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Inspiration from linear model under MCAR

We start with the scenario of data homogeneity, which leads to the missing completely at
random (MCAR) assumption:

Assumption 1 (MCAR)

Γ ⊥ (X ,Y ).

Define the population slope β∗ = argmin
β∈Rd

E[(Y − X⊤β)2].

Observe that under MCAR,

> By KKT conditions, θ = E[Y ] = E[X ]⊤β∗.

> Replace E[X ] by the sample mean X̄all such that

X̄all = n−1
n∑

i=1

Xi = (1− n−1
n∑

i=1

Γi )X̄0 + n−1
n∑

i=1

ΓiXi .

Note. When β∗ is estimated via least squares β̂least-squares, this approach aligns with the

semi-supervised least squares (SSLS) estimator θ̂SSLS introduced by Zhang et al. (2019).

> In low dimensions, θ̂SSLS is CAN and at least as efficient as Ȳ1,

> require the covariate dimension d satisfying d = o(
√
nP), where nP =

∑n
i=1 Γi is the

primary sample size.
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Inspiration from linear model and AIPW under MCAR

Let

m(X ) = E [Y | X ] and γn(X ) = P(Γ = 1 | X ).

Let m∗(·) and γ∗
n (·) represent the working models for the outcome regression and

propensity score.

> Under MCAR, γn(X ) = γn = P(Γ = 1) and θg = θt =: θ.

> Use the naive estimator γ̂n = n−1 ∑n
i=1 Γi , then γ∗

n = γn.

> Thus, with m∗(X ) = X⊤β∗, AIPW always gives the consistent estimator for θ:

θ = E
[
X⊤β∗ +

Γ

γ∗
n

(
Y − X⊤β∗

)]
≈ X̄⊤

allβ
∗ + En

[
Γ

γ∗
n

(
Y − X⊤β∗

)]
.

Note.

> To apply to high-dimensional setting, we can estimate β∗ by Lasso.

> To relax the sparsity assumption, we can use cross-fitting.

.
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Procedure under MCAR

Step 1: Divide the index set [n] into K disjoint subsets I1, . . . , IK with equal sizes such
that nk := |Ik | = n/K for k ∈ [K ]. Let γ̂k = n−1

k

∑
i∈Ik

Γi and I−k = [n] \ Ik .

Step 2: For each k ∈ [K ], compute the Lasso estimator β̂(−k): with some λn ≥ 0,

β̂(−k) = argmin
β∈Rd


∑

i∈I−k
Γi

(
Yi − X⊤

i β
)2∑

i∈I−k
Γi

+ λn ||β||1

 .

Step 3: The mean estimator is proposed as:

θ̂ = n−1
K∑

k=1

∑
i∈Ik

(ΓiXi + (1− Γi )X̄0)
⊤β̂(−k) + n−1

K∑
k=1

∑
i∈Ik

Γi

γ̂k

(
Yi − X⊤

i β̂(−k)
)
. (0.1)

When the sample gram matrix Ξ̄0 is also observable, the corresponding asymptotic
variance estimator is defined as:

σ̂2 =n−1
K∑

k=1

∑
i∈Ik

(1− Γi ) β̂
(−k),⊤Ξ̄0β̂

(−k)

+ n−1
K∑

k=1

∑
i∈Ik

{
ΓiX

⊤
i β̂(−k) +

Γi

γ̂k

(
Yi − X⊤

i β̂(−k)
)}2

− θ̂2. (0.2)
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Asymptotic theory

Assumption 2

Let the following conditions hold with constants κl , σ, σω, δω > 0: (a) X is a
sub-Gaussian random vector with

∣∣∣∣X⊤v
∣∣∣∣
ψ2

≤ σ ||v ||2 , ∀v ∈ Rd . In addition,∣∣∣∣X⊤β∗∣∣∣∣
ψ2

≤ σ and infv∈Rd ,||v||2=1 E[(X⊤v)2] ≥ κl . (b) w = Y − X⊤β∗ is a

sub-Gaussian random variable with ||w ||ψ2
≤ σw and E

[
w 2

]
≥ δw .

The following theorem characterizes asymptotic properties of the mean estimator θ̂.

Theorem 3

Suppose that Assumptions 1 and 2 hold. Choose λn ≍
√

log d/ (nγn). If
nγn ≫ (log n)2 log d and the sparsity level satisfies s = ∥β∗∥0 = o (nγn/ log d), then as

n, d → ∞, θ̂ − θ = Op

(
(nγn)

−1/2
)
, σ̂2 = σ2

n {1 + op(1)}, and σ̂−1√n(θ̂ − θ)
d−→ N (0, 1),

where σ2
n = Var

(
X⊤β∗ + Γ

γn

(
Y − X⊤β∗)) = γ−1

n Var (Y ) +
(
1− γ−1

n

)
Var

(
X⊤β∗).
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AIPW under MAR

In the following, we consider the possibility of data heterogeneity between primary and
external data and assume the following missing at random (MAR) condition instead

Assumption 4 (MAR)

Γ ⊥ Y | X and γn(X ) := P(Γ = 1 | X ) > 0 almost surely.

We are interested in

θg = E[Y ] (generalizability) and θt = E[Y | Γ = 0] (transportability).
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AIPW under MAR

For AIPW, as long as either m∗(·) = m(·) or γ∗
n (·) = γn(·),

θg = E
[
m∗ (X ) +

Γ

γ∗
n (X )

(Y −m∗ (X ))

]
,

θt = E
[
1− Γ

1− γn
m∗ (X ) +

Γ (1− γ∗
n (X ))

γ∗
n (X ) (1− γn)

(Y −m∗ (X ))

]
.

Consider a linear outcome model m∗ (X ) = X⊤β∗
OR . The above representations can also

be expressed as:

θg = (1− γn)E [X | Γ = 0]⊤ β∗
OR + E

[
ΓX⊤β∗

OR +
Γ

γ∗
n (X )

(
Y − X⊤β∗

OR

)]
,

θt = E [X | Γ = 0]⊤ β∗
OR + E

[
Γ (1− γ∗

n (X ))

γ∗
n (X ) (1− γn)

(
Y − X⊤β∗

OR

)]
.

Note. With linear model, we can still construct consistent estimator for θg and θt .
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Estimation for nuisances under MAR

Consider a cross-fitted estimation. For each fold Ik , and separate I−k = [n] \ Ik into two
disjoint subsets I−k,α, I−k,β with same sizes M.

> Construct a logistic propensity estimator for γ∗
n (X ) = expit(X⊤α∗

PS) as

α̂
(−k)
PS = argmin

α∈Rd

M−1
∑

i∈I−k,α

{
(1− Γi ) X̄

⊤
0 α+ Γi exp

(
−X⊤

i α
)}

+ λα ||α||1

 .

> Construct a linear outcome estimator

β̂
(−k)
OR = argmin

β∈Rd

M−1
∑

i∈I−k,β

Γi exp
(
−X⊤

i α̂
(−k)
PS

)(
Yi − X⊤

i β
)2

+ λβ ||β||1

 .

To leveraging conditional independence, we also define a oracle nuisance estimator
assuming α∗

PS is known.

β̃
(−k)
OR = argmin

β∈Rd

M−1
∑

i∈I−k,β

Γi exp
(
−X⊤

i α∗
PS

)(
Yi − X⊤

i β
)2

+ λβ ||β||1

 .
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Asymptotic theory

When X̄0 is observed, θg = E [Y ] can be estimated by

θ̂g = n−1
K∑

k=1

∑
i∈Ik

(
ΓiXi + (1− Γi ) X̄0

)⊤
β̂
(−k)
OR +

Γi

g
(
X⊤

i α̂
(−k)
PS

) (
Yi − X⊤

i β̂
(−k)
OR

) .

When Ξ̄0 is further observed, we can construct the asymptotic variance estimators as:

σ̂2
g = n−1

K∑
k=1

∑
i∈Ik

(1− Γi ) β̂
(−k),⊤
OR Ξ̄0β̂

(−k)
OR − θ̂2g

+ n−1
K∑

k=1

∑
i∈Ik

ΓiX
⊤
i β̂

(−k)
OR +

Γi

g
(
X⊤

i α̂
(−k)
PS

) (
Yi − X⊤

i β̂
(−k)
OR

)
2
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Assumptions

Let g(x) = expit(x). For propensity score:

> k0(1− γn)/γn ≤ (1− g(X⊤α∗
PS))/g(X

⊤α∗
PS) ≤ k−1

0 (1− γn)/γn almost surely.

> P (Γ = 0) ≥ c0.

> E[γq
n (X )] ≤ νγq

n for some q > 1 and ν > 0.

In addition,

> For each j ∈ {0, 1}, and conditional on Γ = j , X is a sub-Gaussian random vector
and X⊤β∗

OR be a sub-Gaussian random variable, both with parameter σ.

> infv∈Rd ,||v||2=1 E
[(
X⊤v

)2 | Γ = 1
]
≥ κl .

> The residual wOR = Y − X⊤β∗
OR is a sub-Gaussian random variable with parameter

σw , E
[
w 8

OR | Γ = 1
]
≤ σ8

w , and E
[
w 2

OR | Γ = 1
]
≥ δw .
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Asymptotic theory

Theorem 5

Under MAR and regular assumptions. Choose λα ≍ λβ ≍
√

log d/ (nγn). Let
nγn ≫ (log n)2 log d, ∥α∗

PS∥0∥β∗
OR∥0 = o(nγn/(log n (log d)

2)), and either of the following
conditions hold: (1) (Correct OR model) µ (X ) = X⊤β∗

OR or (2) (Correct PS model)
γn (X ) = g

(
X⊤α∗

PS

)
and ∥α∗

PS∥0 = o(
√
nγn/ log d). Then as n, d → ∞,

(a) θ̂g − θg = Op

(
(nγn)

−1/2
)
, σ̂2

g = σ2
g {1 + op(1)}, and σ̂−1√n(θ̂g − θg )

d−→ N (0, 1),

where σ2
g = Var

(
X⊤β∗

OR + Γ

g(X⊤α∗
PS)

(
Y − X⊤β∗

OR

))
.

(b) θ̂t − θt = Op

(
(nγn)

−1/2
)
, σ̂2

t = σ2
t {1 + op(1)}, and σ̂−1

t

√
n(θ̂t − θt)

d−→ N (0, 1),

where σ2
t = E

[{
1−Γ
1−γn

(
X⊤β∗

OR − θt
)
+

Γ(1−g(X⊤α∗
PS))

(1−γn)g(X⊤α∗
PS)

(
Y − X⊤β∗

OR

)}2
]
.
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Extensions

We also study some extensions of our method in

> Estimate ATE in causal inference

> Estimate ATE on the external population in causal inference.
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